Чувствительность: 7 мВ/Па (2,3 мВ/Па с аттенюатором)
Макс. уровень звукового давления (на 1 КГц): 142 дБ (152 дБ с аттенюатором)
Питание: фантомное 48 В / 3,5 мА
Номинальное сопротивление: 150 Ом
Минимальное оконечное сопротивление: 1000 Ом
Габариты: 48 х 199 мм
Вес: около 396 г
*Конденса́торный микрофо́н — микрофон, действие которого основано на использовании свойств электрического конденсатора.
Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией), при звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора.
Если конденсатор заряжен, то изменение ёмкости конденсатора приводит к возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель.
Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 50-60 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты.
Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).
Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественный захват звука, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении. Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры, что не позволяет использовать их в полевых условиях.
*Чувствительность определяет способность микрофона преобразовывать акустическое давление в электрическое напряжение. Как всякая передаточная функция она определяется отношением сигнала на выходе микрофона, то есть напряжения U(В), к сигналу на входе микрофона, то есть звуковому давлению p(Па).
Чувствительность микрофона определяется в свободном звуковом поле, то есть при отсутствии влияния отражающих поверхностей. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона, это направление называется осевой чувствительностью:M0 = U/P0 (мВ/Па).
Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона.
Таким образом, микрофон с чувствительностью −75 дБ менее чувствителен, чем −54 дБ, а с обозначением 2 мВ/Па менее чувствителен, чем 20 мВ/Па. Для ориентировки : −54 дБ это то же, что и 2,0 мВ/Па. Также надо учесть, что если у микрофона меньше чувствительность, это вовсе не означает, что он хуже.
*Уровень максимального звукового давления (max SPL) — уровень звукового давления, при котором коэффициент гармонических искажений не превосходит заданного значения. В современных студийных микрофонах этот уровень составляет 140-150 дБ при величине коэффициента гармонических искажений 0,5% на частоте 1000 Гц.
*Диапазон звуковых частот - данная характеристика указывает на то, в каком диапазоне частот устройство может передавать или воспроизводить звуковые сигналы.
Максимальный диапазон воспроизводимых частот для аудиотехники 20 Гц -20 КГц. Однако такой широкий диапазон ухо среднестатистического слушателя не воспринимает.
Нормальным считается диапазон 30 Гц - 18 КГц. Различие слуха конкретных пользователей очень сильно влияет на восприятие звуковой информации и заметность искажений звука на разных частотах. Поскольку нет людей с одинаково устроенным слуховым аппаратом (ухом), постольку и искажения на тех или иных частотах каждым конкретным слушателем будут ощущаться по разному.
* Аттенюатор — это электронное устройство, которое уменьшает амплитуду или мощность сигнала без существенного искажения его формы.
С точки зрения работы, аттенюатор является противоположностью усилителя, хотя оба эти устройства имеют различные принципы работы. В то время как усилитель обеспечивает усиление, аттенюатор обеспечивает ослабление, или усиление в меньше, чем 1 раз.
Аттенюатор ослабляет сигнал до предусилителя, то есть он защищает предусилитель от перегрузки, но отнюдь не защищает мембрану.
Впрочем, современные микрофоны не могут быть повреждены тем уровнем максимального звукового давления, который могут производить подавляющее большинство инструментов.
Аттенюаторы изменяют чувствительность и объем в микрофоне во избежание перегрузки при воздействии очень громкого источника звука.
*Фильтр ни́жних часто́т (ФНЧ) — электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза) и уменьшающий (подавляющий) частоты сигнала выше этой частоты. Степень подавления каждой частоты зависит от вида фильтра.
Для звуковых волн твёрдый барьер играет роль фильтра нижних частот — например, в музыке, играющей в другой комнате, легко различимы басы, а высокие частоты отфильтровываются (звук «оглушается»). Точно так же ухом воспринимается музыка, играющая в закрытой машине.
Электронные фильтры нижних частот используются для подавления пульсаций напряжения на выходе выпрямителей переменного тока, для разделения частотных полос в акустических системах, в системах передачи данных для подавления высокочастотных помех и ограничения спектра сигнала, а также имеют большое число других применений.